Microbial transformation of non steroids

The microbial transformation of mesterolone (= (1alpha,5alpha,17beta)-17-hydroxy-1-methylandrostan-3-one; 1), by a number of fungi yielded (1alpha,5alpha)-1-methylandrostane-3,17-dione (2), (1alpha,3beta,5alpha,17beta)-1-methylandrostane-3,17-diol (3), (5alpha)-1-methylandrost-1-ene-3,17-dione (4), (1alpha,5alpha,15alpha)-15-hydroxy-1-methylandrostane-3,17-dione (5), (1alpha,5alpha,6alpha,17beta)-6,17-dihydroxy-1-methylandrostan-3-one (6), (1alpha,5alpha,7alpha,17beta)-7,17-dihydroxy-1-methylandrostan-3-one (7), (1alpha,5alpha,11alpha,17beta)-11,17-dihydroxy-1-methylandrostan-3-one (8), (1alpha,5alpha,15alpha, 17beta)15,17-dihydroxy-1-methylandrostan-3-one (9), and (5alpha,15alpha,17beta)-15,17-dihydroxy-1-methylandrost-1-en-3-one (10). Metabolites 5-10 were found to be new compounds. All metabolites, except 2, 3, 6, and 7, exhibited potent anti-inflammatory activity. The structures of these metabolites were characterized on the basis of spectroscopic studies, and the structure of 5 was also determined by single-crystal X-ray-diffraction analysis.

The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating β-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:

In 1876, Robert Koch (1843–1910) established that microorganisms can cause disease. He found that the blood of cattle which were infected with anthrax always had large numbers of Bacillus anthracis . Koch found that he could transmit anthrax from one animal to another by taking a small sample of blood from the infected animal and injecting it into a healthy one, and this caused the healthy animal to become sick. He also found that he could grow the bacteria in a nutrient broth, then inject it into a healthy animal, and cause illness. Based on these experiments, he devised criteria for establishing a causal link between a microorganism and a disease and these are now known as Koch's postulates . [41] Although these postulates cannot be applied in all cases, they do retain historical importance to the development of scientific thought and are still being used today. [42]

Microbial transformation of non steroids

microbial transformation of non steroids

Media:

microbial transformation of non steroidsmicrobial transformation of non steroidsmicrobial transformation of non steroidsmicrobial transformation of non steroidsmicrobial transformation of non steroids

http://buy-steroids.org